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Abstract. Polaron formation is investigated in a one-dimensional chain by taking into account both the
local Holstein and the non-local SSH electron-phonon interactions. The study of the adiabatic regime
points out that the combined effects of the two interactions are important mainly in the weak coupling
regime. Thus, using the weak-coupling perturbation theory, spectral weights, effective masses, polaronic
phase-diagram, and band structures are discussed. Contrarily to what happens in the Fröhlich and Holstein
models, we find that the ratio between the coherent spectral weight and the mass renormalization ratio
is greater than 1. Moreover, we show that the non-local electron-phonon interaction is responsible for the
largest deviations of the band structure from the cosine shape of the free energy band.

PACS. 71.38.-k Polarons and electron-phonon interactions

1 Introduction

In the last years the presence of relevant electron-phonon
(el-ph) interactions and polaron signatures [1,2] has been
evidenced in several compounds, like manganites [3],
fullerenes [4], carbon nanotubes [5,6], cuprates [7], DNA
and conducting polymers [8–12]. The amount of experi-
mental data has intensified the study of realistic lattice in-
teraction models, stimulating the interest for those where
the effects of more complex electron-phonon couplings are
taken into account [12].

In this paper we study the Hamiltonian that has been
derived from general arguments for an electron-harmonic
lattice system, under the only assumption that the elec-
tronic transfer integral and the electronic local energy are
linear functions of the lattice displacements [13]. Accord-
ing to this analysis a single electron interacts with an op-
tical phonon mode through both the local Holstein cou-
pling [14] and the non-local SSH (Su-Schrieffer-Heeger)
coupling [15]. We notice that this non-local SSH coupling
differs from the conventional one where acoustical, instead
of optical, phonons are considered [15]. Since the electronic
transfer integral typically depends on the lattice displace-
ments, the model can be used to describe different sys-
tems with different relative importance of the two el-ph
interactions.

A preliminar perturbative analysis of the proposed
model is contained in reference [13], where the ground
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state properties have been characterized evaluating the
ground state energy, the electron-lattice correlation func-
tions, the phonon number and the spectral weight. How-
ever, in reference [13] the attention focuses only on the
non-local limit.

Our purpose in this paper is to examine how the two
different Holstein and SSH el-ph interactions simultane-
ously affect the polaronic state. In Section 2 we present
the model. In Section 3 we study the adiabatic regime
showing that in this limit, characterized by the neglect-
ing of the quantum lattice fluctuations, the effects of the
combined interactions are important only for weak cou-
pling. Thus, in Section 4, using the weak-coupling pertur-
bation theory, we analyze the behaviors of the spectral
weight and the polaron effective mass as functions of the
two el-ph coupling constants and the adiabaticity ratio.
The pertubative results clearly show that the electron un-
dergoes a mass enhancement larger than the reduction of
the spectral weight, pointing out the relevance of the non-
local el-ph coupling for the tendency towards localization.
Moreover, according to the values assumed by the spec-
tral weight, a phase diagram is presented in order to locate
the region of the coupling values where a crossover regime
begins. Finally, we study the band structure as function
of the el-ph coupling constants and the adiabaticity ratio,
showing that the major contribution to the renormalized
electron band comes from the non-local coupling. Conclu-
sions are summarized in Section 5.
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2 The model

The real space Hamiltonian which describes electrons in
interaction with harmonic lattice deformations [13] reads

H =
∑

i,j,σ

c†i,σti,j({xk})cj,σ +
∑

i

p2
i

2M

+
∑

i,j

xiKi,jxj

2
+

∑

i,σ

ei ({xk}) c†i,σci,σ, (1)

where c†i,σ (ci,σ) is the fermion creation (destruction) op-
erator, σ is the spin index, ti,j({xk}) is the electronic
transfer integral for fixed lattice deformations {xk}, M is
the ionic mass, Ki,j is the spring constant matrix, and
ei({xk}) is the local energy of the electron. Limiting the
hopping to nearest-neighbor sites of a linear chain, we con-
sider that ti,j({xk}) and ei({xk}) are linear functions of
the lattice displacements {xk}

tn+1,n ({xk}) = −t + αssh(xn+1 − xn), (2)

ei({xk}) = αholxi. (3)

Thus for spinless electrons and dispersionless Einstein
phonons the Hamiltonian can be written as

H = −t
∑

i

(
c†i ci+1 + c†i+1ci

)
+

∑

i

[
p2

i

2M
+

1
2
Kx2

i

]
+Hint,

(4)
with

Hint = αssh

∑

i

(
c†i ci+1 + c†i+1ci

)
(xi+1 − xi)

+ αhol

∑

i

xic
†
ici. (5)

Using the second quantization for phonon operators, the
Hamiltonian becomes

Ĥ = −t
∑

i

(
c†i ci+1 + c†i+1ci

)
+ ω0

∑

i

[
a†

iai +
1
2

]
+ Ĥint,

(6)
with

Ĥint = gsshω0

∑

i

(
c†ici+1 + c†i+1ci

)

×
(
a†

i+1 + ai+1 − a†
i − ai

)
+ gholω0

∑

i

c†ici(a
†
i + ai),

(7)

where a†
i (ai) is the phonon creation (destruction) op-

erator and ω0 the quantum of vibrational energy per
site. The quantity gssh = αssh/

√
2Mω3

0 is the SSH cou-
pling that is mainly discussed in references [13,16], while
ghol = αhol/

√
2Mω3

0 is the Holstein local electron-phonon
coupling. We use units such that the lattice spacing a = 1
and � = 1.

3 Adiabatic limit

The adiabatic regime of the model is obtained in the limit
of infinite ionic mass M → ∞ keeping the spring constant
and the el-ph couplings finite in the Hamiltonian (4). This
assumption implies the neglecting of the quantum lattice
fluctuations, so the lattice displacements become classi-
cal fields. In order to investigate the electronic features of
the system, we need to fix the optimal lattice configura-
tion. This is calculated by minimizing the ground state
energy with respect to the lattice displacements. From
equation (4) we obtain

E ({xk}) =

〈
−t

∑

i

(
c†ici+1 + c†i+1ci

)

+αssh

∑

i

(
c†ici+1+c†i+1ci

)
(xi+1 − xi)+αhol

∑

i

xic
†
i ci

〉

+
∑

i

1
2
Kx2

i , (8)

where the ground state total energy E({xk}) has been
written as the sum of the electronic energy in the lat-
tice displacement classical fields xi and the energy of the
fields xi themselves. In order to evaluate the mean value,
we diagonalize the corresponding electronic Hamiltonian
at any fixed configuration of the lattice displacements up
to 40 sites. This allows us to calculate the phase dia-
gram λssh = α2

ssh/4Kt = g2
ssh/2t̃ vs. λhol = α2

hol/4Kt =
g2

hol/2t̃, with t̃ = t/ω0.
In the adiabatic regime of the SSH model (αhol = 0),

the numerical analysis shows two solutions: the first char-
acteristic of a free particle with vanishing deformations,
the latter corresponding to a self-trapped state. However,
this last solution has to be discarded since it is well known
that the SSH model with optical phonons exhibits an un-
physical region due to the pathological sign change of
the next-nearest-neighbor hopping [13,16]. Figure 1 shows
that in the SSH case the unphysical regions starts from
λssh ≥ 0.25 [16]. In the adiabatic regime of the Holstein
model (αssh = 0), the total energy (8) always has a min-
imum corresponding to a self-trapped state. As discussed
in reference [18], the radius of the localized state under-
goes a smooth transition from large to small sizes and it
is restricted to a lattice constant starting from values of
λ near to the unity. Here we assume that the localization
occurs when the particle probability of being on the most
deformed site is greater than 0.8 (in Fig. 1 the transition
line to Holstein-like localization is dashed).

The case when both the couplings are present is very
interesting. Indeed, the increase of the Holstein coupling
enlarges the unphysical region caused by the SSH inter-
action, and, for large values of λhol, the critical values of
λssh giving the unphysical behavior show a marked de-
crease. On the other hand, the SSH coupling favors the
on-site Holstein-like localization and induces a non negli-
gible electron probability also on the nearest-neighbor of
the most deformed site. We notice that for finite values



E. Piegari et al.: Signatures of polaron formation in systems with local and non-local electron-phonon couplings 417

Fig. 1. Phase diagram of the system in the adiabatic regime
for a chain of 40 sites. The localized region is determined by
imposing that the particle probability of being on the most
deformed site is greater than 0.8.

of the el-ph coupling constants the electronic wave func-
tion always develops a peak on the nearest-neighbor of
the most deformed site, whose height depends on the val-
ues of the couplings in a non linear way. Such a feature
prevents particle probability of becoming one on the most
deformed site. Actually, we find that with the assumption
made above by increasing λssh the localization is reached
for smaller values of λhol. A different choice for the local-
ization criteria can modify the shape of the transition line
without changing this general trend. Therefore, there is a
cooperative effect in influencing the properties of the elec-
tron obtained in the separate SSH and Holstein models.
Since the physical region of the model is actually restricted
to the weak coupling regime, in the next section we focus
on it and use the perturbative approach to characterize
the onset of the polaronic crossover.

4 Perturbation theory

The lowest-order perturbative approach has proved a re-
markable useful tool in understanding the el-ph physics
providing valuable indications on the beginning of the po-
laronic crossover [11,16]. In this paper we treat the el-ph
interaction term Hint as the perturbation and therefore
we can explore both the adiabatic and the antiadiabatic
regime considering small values of the el-ph couplings:
gssh, ghol � min(t̃, 1). After transforming the phonon and
the electron operators, one gets the following Hamiltonian
in the momentum space

Ĥ =
∑

k

ε(k)c†kck + ω0

∑

q

a†
qaq + Ĥint (9)

where

Ĥint =
1√
N

∑

k

g(k, k + q)c†k+qck(a†
−q + aq)

+
ghol√

N

∑

k

c†k+qck(a†
−q + aq), (10)

with ε(k) = −2t cos(k) the bare electron band, g(k, k +
q) = −2igsshω0[sin(k)− sin(k+q)] the SSH vertex, and N
the total number of the lattice sites. It is straightforward
to note that the coupling of the lattice distortion to the
covalent bond (c†i ci+1+c†i+1ci) arises a non-trivial momen-
tum dependent vertex which competes with the Holstein
one. Furthermore the SSH vertex vanishes as the trans-
ferred phononic momentum q is zero. In the next subsec-
tions we will show the different features induced by the
two kinds of el-ph interactions on the spectral weight, the
renormalized mass and the band structure.

In order to find the new energy and lifetime of the
electron interacting with phonons as in (6), we need to
evaluate the real and imaginary parts of the self-energy,
which at the lowest perturbative order reads:

Σ(k, ω) =
∫ π

−π

dq

2π

|g(k + q, k)|2
ω − ω0 − ε(k + q) + iδ

+
∫ π

π

dq

2π

g2
holω

2
0

ω − ω0 − ε(k + q) + iδ
. (11)

The first and the second term of the right side of equa-
tion (11) define Σssh and Σhol, respectively. Carrying out
the phonon momentum integration, one gets

�Σssh(k, ω) = −4g2
sshω0

[
1 − ω̃

4t̃2
+

sin2(k)√
1 + ω̃2 − 2ω̃ − 4t̃2

−
√

1 + ω̃2 − 2ω̃ − 4t̃2

4t̃2

]
, (12)

�Σhol(ω) = − g2
holω0√

1 + ω̃2 − 2ω̃ − 4t̃2
, (13)

�Σssh(k, ω) = −4g2
sshω0

[
sin2(k)√

1 + ω̃2 − 2ω̃ − 4t̃2

+

√
1 + ω̃2 − 2ω̃ − 4t̃2

4t̃2
− sin(k)

t̃

]
, (14)

�Σhol(ω) = − g2
holω0√

1 + ω̃2 − 2ω̃ − 4t̃2
, (15)

for (1 − ω̃) > 2t̃, with ω̃ = ω/ω0. As one can see, the
interactions with phonons lower the energy levels of the
electron (see below). Moreover, the value of the self-energy
as a function of ω has a singularity as ω → ω0 − 2t, i.e.
k → kc = arccos(1− 1/2t̃) within the on shell approxima-
tion. The nature of this singularity is determined by the
behavior of the function inside the integral for q near to kc,
as discussed in [19]. Since for k → kc the inverse quasipar-
ticle lifetime �Σ diverges, there is no quasiparticle close
to the threshold, as for the Holstein case.
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4.1 Spectral weight and effective mass

An insight in the polaron formation is provided by the be-
havior of the spectral weight and the effective mass. Ac-
tually, the polaron crossover is expected to be associated
with a reduction of the spectral weight and an enhance-
ment of the charge carrier mass. The spectral weight and
the renormalized mass are defined as

Z(k = 0) =
1

(1 − ∂�Σ(k, ω)/∂ω|ω=−2t,k=0)
, (16)

meff

m
=

1
Z(k = 0)(1+∂�Σssh(k, ω)/∂ε(k)|ω=−2t,k=0)

,

(17)

where m is the bare band mass. It is worthwhile noticing
that, since the Holstein contribution to the self-energy is
momentum independent, if gssh = 0 then m/meff = Z(0).
Such a feature of the Holstein coupling strictly links the
reduction of the coherence of the electron to its localiza-
tion in any coupling regime [20]. The SSH non-local cou-
pling breaks down this picture introducing a momentum
dependence in the self-energy expression. From the equa-
tions above, one gets

Z(k = 0) =

(
1 +

g2
ssh

t̃2

[
(1 + 2t̃)√

1 + 4t̃
− 1

]

+ g2
hol

(1 + 2t̃)
(1 + 4t̃)3/2

)−1

, (18)

meff

m
= 1 +

g2
ssh

2t̃

[
8√

1 + 4t̃
+

2
t̃

(
2t̃ + 1√
1 + 4t̃

− 1

)]

+ g2
hol

(1 + 2t̃)
(1 + 4t̃)3/2

. (19)

We show the spectral weight Z(k = 0) and the inverse
ratio m/meff for t̃ = 1 as functions of ghol and gssh in
the left and right panel of the Figure 2, respectively. As
expected, an increase of the el-ph coupling strength yields
a reduction of the spectral weight and an enhancement
of the effective mass. However the mass renormalization
effects are much more sensitive to the coupling parame-
ter gssh, pointing out that the SSH mechanism of local-
ization can be more effective than the Holstein one.

In Figure 3 we plot Z(k = 0) and meff /m as functions
of the inverse adiabaticity ratio t̃. By increasing t̃, the
renormalization factor Z(k = 0) asymptotically goes to 1
and the effective mass decreases towards the band mass
value. It is interesting to note that the reduction of Z(k =
0) due to the SSH contribution is more important than
the Holstein one for t̃ < 2, while the SSH contribution to
the mass enhancement is larger than the Holstein one for
all values of t̃.

The correlation between the behaviors of the spec-
tral weight and the effective mass established by equa-
tion (17) is quantified in Figure 4, where we plot the ra-
tio Z(k = 0)/(m/meff ) versus t̃ for different values of

(a)

(b)

Fig. 2. (a) Spectral weight Z(0) (solid line) and polaron ef-
fective mass inverse ratio m/meff (dashed line) as functions
of the Holstein coupling ghol for a fixed value of the SSH
coupling gssh. (b) Z(0) (solid line) and m/meff (dashed line)
vs. SSH coupling gssh for a fixed value of the Holstein cou-
pling ghol.

the coupling constant gssh. The curves of Figure 4 clearly
show that this ratio is always greater than 1, pointing
out that the non-local interaction term is more effective
for the mass enhancement rather than for the reduction
of the spectral weight. In particular an increase of gssh

and a decrease of t̃ produce larger values of the ratio
supporting the tendency towards localization. We stress
that the opposite occurs for long-range el-ph “density-
displacement” Fröhlich interactions. Within the weak-
coupling perturbative approach, in the continuum case it
is well known that the ratio Z(0)/(m/meff ) is less than
1, being Z(0)/(m/meff ) � (1 − α/2)/((1 − α/6), with α
the dimensionless el-ph coupling constant [21]. Recently
values of the ratio less than 1 are also found for the ex-
tension of the Fröhlich polaron model to a discrete ionic
lattice [22,23]. In such a case, in the adiabatic regime a
range of values of the el-ph coupling is found where the
ground state is well described by a particle with a weakly
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(a)

(b)

Fig. 3. (a) Spectral weight Z(0) (solid line) vs. t̃ for gssh =
ghol = 0.25. The dashed and the dot-dashed lines show the SSH
contribution (ghol = 0) and the Holstein contribution (gssh =
0), respectively. (b) Effective mass respect band mass (solid
line) vs. t̃ for gssh = ghol = 0.25. The dashed and the dot-
dashed lines show the SSH contribution (ghol = 0) and the
Holstein contribution (gssh = 0), respectively.

renormalized mass and a spectral weight much smaller
than unity [23]. Therefore the Fröhlich-like non-local inter-
action favors the transfer of the spectral weight at higher
energies with increasing the coupling constant. On the
contrary the SSH coupling mainly supplies an enhance-
ment of the effective mass.

4.2 Phase diagram

We conclude our analysis at k = 0 calculating the phase
diagram of Figure 5. The crossover lines are defined as
the set of the coupling values for which Z(0) is equal to
0.9. Below the curves, one has Z(0) > 0.9, so electrons are
expected to be the natural quasi-particles of the system
in which the el-ph interactions are weak [23]. Above the
lines the spectral weight reduction signals that electrons

Fig. 4. Ratio Z/(m/meff ) at k = 0 as function of t̃ for four
different values of gssh and ghol = 0.25.

Fig. 5. Phase-diagram ghol versus gssh for a single charge car-
rier in a discrete chain. The crossover lines correspond to dif-
ferent values of t̃ and divide the parameter space in the two
regions Z(0) > 0.9 and Z(0) < 0.9.

are no more good quasiparticles and indicates the onset of
polaronic features, confirmed by the effective mass calcu-
lation. As shown in the phase-diagram, by increasing t̃, the
crossover region shifts towards larger values of the el-ph
couplings, where the application of a low order perturba-
tive theory starts to be questionable. However we wish to
stress that the simultaneous presence of the non-local SSH
coupling allows smaller values of the local Holstein cou-
pling constant to drag the system in the crossover region.

4.3 Energy bands

The energy bands renormalized by the el-ph couplings are
obtained evaluating the real part of the self-energy on the
energy-shell:

E(k) = ε(k) + �Σssh(k, ε(k)) + �Σhol(ε(k)). (20)
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(a)

(b)

Fig. 6. (a) SSH band structures for different values of gssh and
t̃ = 1. (b) Holstein band structures for different values of ghol

and t̃ = 1. The free band (dotted line) is shown for comparison.

As stressed above, it is well-known that the perturbative
approach breaks down as the energy measured from the
bottom of the band equals the phonon frequency ω0, i.e.
at k = kc. Actually, for |k| > kc, the particle becomes un-
stable to optical phonon emission and the dispersion curve
bends over and becomes horizontal [24,25]. Therefore, for
t̃ > 1/4 we restrict our analysis to the region |k| < kc.

First, we compare the SSH (ghol = 0) and the Hol-
stein (gssh = 0) contributions to the band structure of
the model and plot them for t̃ = 1 in the left and right
panel of Figure 6, respectively. As one can see, the SSH
contribution modifies the shape of the energy band. In-
deed, larger values of gssh induce stronger deviations from
the free band structure at each fixed wave-vector number.
Moreover the distortion of the curvature increases mov-
ing away from the bottom of the band. On the contrary,
the band structure essentially stays cosine-like on varying
the Holstein coupling. When both the el-ph interactions
are effective in the investigated weak-coupling regime we
find that the band shape is dominated by the SSH con-

Fig. 7. Band structures for different values of the in-
verse adiabatic ratio t̃. From the top to the bottom t̃ =
0.4, 0.6, 0.8, 1.0, 1.2. Solid grey lines show the Holstein contri-
bution (gssh = 0 and ghol = 0.25); solid black lines show the
SSH contribution (ghol = 0 and gssh = 0.25).

tribution over almost the whole Brillouin zone. Thus, dif-
ferently from the Holstein model where distortions of the
energy bands are found only in the intermediate regime
of the local coupling, the simultaneous manifestation of
weak local and non-local el-ph interactions is responsible
for nonsinusoidal dependence on k of the energy bands,
reflecting polaron structure. For t̃ < 1/4 the largest de-
viations from the bare electron band are obtained at the
zone-edge where both the contributions are relevant, yield-
ing a non negligible bandwith reduction.

Finally, we determine how the band structure is af-
fected by the degree of adiabaticity of the system. In
Figure 7 we plot the SSH (ghol = 0) and the Holstein
(gssh = 0) contributions for several values of t̃. As shown,
the flattening of the curves with decreasing t̃ is more pro-
nounced for the non-local contribution. Moreover we ob-
serve that for k values close to the bottom of the band
(k = 0) the difference between the two energy contribu-
tions increases by decreasing t̃. Thus, moving towards the
antiadiabatic regime, the SSH contribution is more and
more effective than the Holstein one to determine the low
energy states of the system.

5 Conclusions

We investigated polaron features in a discrete chain tak-
ing into account both the local Holstein and the non-local
SSH coupling. In particular, we studied the adiabatic limit
of the model and characterized the onset of the polaronic
crossover analyzing the behavior of the spectral weight
and the effective mass. Both in the adiabatic and antiadi-
abatic regime we found that the non-local el-ph interaction
provides a large mass enhancement which is no more sim-
ply related to the reduction of the spectral weight a k = 0,
like in the Holstein model. In particular we showed that
the non-local SSH coupling is more effective for the mass
enhancement rather than for the reduction of the spectral
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weight, contrarily to what happens for long-range Fröhlich
interactions. Moreover we calculated the phase diagram
ghol vs. gssh and showed that the simultaneous action of
the two el-ph interactions more easily drives the system in
the crossover region. Finally, in order to quantify the ef-
fects of the different el-ph couplings on the polaron bands,
we performed an analysis of the band structures varying
the adiabaticity parameter and the el-ph coupling con-
stants. We emphasized that the curvature induced by the
considered one-phonon scattering processes changes qual-
itatively the shape of the bare electron band.

In order to overcome the limitations of the weak-
coupling regime it is possible to study the system intro-
ducing a variational wave function that includes the fea-
tures of both the local and non-local coupling. This can be
achieved by extending the variational approach of a recent
paper [13]. Work in this direction is in progress.
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